@article{nie2023flexmoe,title={FlexMoE: Scaling Large-scale Sparse Pre-trained Model Training via Dynamic Device Placement},author={Nie, Xiaonan and Miao, Xupeng and Wang, Zilong and Yang, Zichao and Xue, Jilong and Ma, Lingxiao and Cao, Gang and Cui, Bin},journal={Proceedings of the ACM on Management of Data},volume={1},number={1},pages={1--19},year={2023}}
@article{zhang2023unified,title={A Unified and Efficient Coordinating Framework for Autonomous DBMS Tuning},author={Zhang, Xinyi and Chang, Zhuo and Wu, Hong and Li, Yang and Chen, Jia and Tan, Jian and Li, Feifei and Cui, Bin},journal={Proceedings of the ACM on Management of Data},volume={1},number={2},pages={1--26},year={2023},publisher={ACM New York, NY, USA}}
@article{huang2023dbpa,title={DBPA: A Benchmark for Transactional Database Performance Anomalies},author={Huang, Shiyue and Wang, Ziwei and Zhang, Xinyi and Tu, Yaofeng and Li, Zhongliang and Cui, Bin},journal={Proceedings of the ACM on Management of Data},volume={1},number={1},pages={1--26},year={2023},publisher={ACM New York, NY, USA}}
@article{li2023volcanoml,title={VolcanoML: speeding up end-to-end AutoML via scalable search space decomposition},author={Li, Yang and Shen, Yu and Zhang, Wentao and Zhang, Ce and Cui, Bin},journal={The VLDB Journal},volume={32},number={2},pages={389--413},year={2023}}
@inproceedings{zhang2022pasca,title={Pasca: A graph neural architecture search system under the scalable paradigm},author={Zhang, Wentao and Shen, Yu and Lin, Zheyu and Li, Yang and Li, Xiaosen and Ouyang, Wen and Tao, Yangyu and Yang, Zhi and Cui, Bin},booktitle={Proceedings of the ACM Web Conference 2022},pages={1817--1828},year={2022}}
@inproceedings{zhang2022nafs,title={NAFS: A Simple yet Tough-to-beat Baseline for Graph Representation Learning},author={Zhang, Wentao and Sheng, Zeang and Yang, Mingyu and Li, Yang and Shen, Yu and Yang, Zhi and Cui, Bin},booktitle={International Conference on Machine Learning},pages={26467--26483},year={2022}}
@article{yang2022diffusion,title={Diffusion models: A comprehensive survey of methods and applications},author={Yang, Ling and Zhang, Zhilong and Song, Yang and Hong, Shenda and Xu, Runsheng and Zhao, Yue and Zhang, Wentao and Cui, Bin and Yang, Ming-Hsuan},journal={ACM Computing Surveys},year={2022}}
@article{bai2022autodc,title={AutoDC: an automatic machine learning framework for disease classification},author={Bai, Yang and Li, Yang and Shen, Yu and Yang, Mingyu and Zhang, Wentao and Cui, Bin},journal={Bioinformatics},volume={38},number={13},pages={3415--3421},year={2022}}
@article{wu2022graph,title={Graph neural networks in recommender systems: a survey},author={Wu, Shiwen and Sun, Fei and Zhang, Wentao and Xie, Xu and Cui, Bin},journal={ACM Computing Surveys},volume={55},number={5},pages={1--37},year={2022}}
@inproceedings{jiang2022zoomer,title={Zoomer: Boosting retrieval on web-scale graphs by regions of interest},author={Jiang, Yuezihan and Cheng, Yu and Zhao, Hanyu and Zhang, Wentao and Miao, Xupeng and He, Yu and Wang, Liang and Yang, Zhi and Cui, Bin},booktitle={2022 IEEE 38th International Conference on Data Engineering},pages={2224--2236},year={2022}}
@inproceedings{zhang2021alg,title={Alg: Fast and accurate active learning framework for graph convolutional networks},author={Zhang, Wentao and Shen, Yu and Li, Yang and Chen, Lei and Yang, Zhi and Cui, Bin},booktitle={Proceedings of the 2021 International Conference on Management of Data},pages={2366--2374},year={2021}}
@article{zhang2021grain,title={GRAIN: improving data efficiency of graph neural networks via diversified influence maximization},author={Zhang, Wentao and Yang, Zhi and Wang, Yexin and Shen, Yu and Li, Yang and Wang, Liang and Cui, Bin},journal={Proceedings of the VLDB Endowment},volume={14},number={11},pages={2473--2482},year={2021},publisher={VLDB Endowment}}
@article{zhang2021node,title={Node dependent local smoothing for scalable graph learning},author={Zhang, Wentao and Yang, Mingyu and Sheng, Zeang and Li, Yang and Ouyang, Wen and Tao, Yangyu and Yang, Zhi and Cui, Bin},journal={Advances in Neural Information Processing Systems},volume={34},pages={20321--20332},year={2021}}
@inproceedings{li2021openbox,title={Openbox: A generalized black-box optimization service},author={Li, Yang and Shen, Yu and Zhang, Wentao and Chen, Yuanwei and Jiang, Huaijun and Liu, Mingchao and Jiang, Jiawei and Gao, Jinyang and Wu, Wentao and Yang, Zhi and others},booktitle={Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery \& Data Mining},pages={3209--3219},year={2021}}
@inproceedings{zhang2022nafs,title={NAFS: A Simple yet Tough-to-beat Baseline for Graph Representation Learning},author={Zhang, Wentao and Sheng, Zeang and Yang, Mingyu and Li, Yang and Shen, Yu and Yang, Zhi and Cui, Bin},booktitle={International Conference on Machine Learning},pages={26467--26483},year={2022}}
@inproceedings{zhang2021alg,title={Alg: Fast and accurate active learning framework for graph convolutional networks},author={Zhang, Wentao and Shen, Yu and Li, Yang and Chen, Lei and Yang, Zhi and Cui, Bin},booktitle={Proceedings of the 2021 International Conference on Management of Data},pages={2366--2374},year={2021}}
@article{zhang2021grain,title={GRAIN: improving data efficiency of graph neural networks via diversified influence maximization},author={Zhang, Wentao and Yang, Zhi and Wang, Yexin and Shen, Yu and Li, Yang and Wang, Liang and Cui, Bin},journal={Proceedings of the VLDB Endowment},volume={14},number={11},pages={2473--2482},year={2021},publisher={VLDB Endowment}}
@article{zhang2021node,title={Node dependent local smoothing for scalable graph learning},author={Zhang, Wentao and Yang, Mingyu and Sheng, Zeang and Li, Yang and Ouyang, Wen and Tao, Yangyu and Yang, Zhi and Cui, Bin},journal={Advances in Neural Information Processing Systems},volume={34},pages={20321--20332},year={2021}}
@article{nie2023flexmoe,title={FlexMoE: Scaling Large-scale Sparse Pre-trained Model Training via Dynamic Device Placement},author={Nie, Xiaonan and Miao, Xupeng and Wang, Zilong and Yang, Zichao and Xue, Jilong and Ma, Lingxiao and Cao, Gang and Cui, Bin},journal={Proceedings of the ACM on Management of Data},volume={1},number={1},pages={1--19},year={2023}}
@inproceedings{zhang2022pasca,title={Pasca: A graph neural architecture search system under the scalable paradigm},author={Zhang, Wentao and Shen, Yu and Lin, Zheyu and Li, Yang and Li, Xiaosen and Ouyang, Wen and Tao, Yangyu and Yang, Zhi and Cui, Bin},booktitle={Proceedings of the ACM Web Conference 2022},pages={1817--1828},year={2022}}
@article{zhang2023unified,title={A Unified and Efficient Coordinating Framework for Autonomous DBMS Tuning},author={Zhang, Xinyi and Chang, Zhuo and Wu, Hong and Li, Yang and Chen, Jia and Tan, Jian and Li, Feifei and Cui, Bin},journal={Proceedings of the ACM on Management of Data},volume={1},number={2},pages={1--26},year={2023},publisher={ACM New York, NY, USA}}
@article{huang2023dbpa,title={DBPA: A Benchmark for Transactional Database Performance Anomalies},author={Huang, Shiyue and Wang, Ziwei and Zhang, Xinyi and Tu, Yaofeng and Li, Zhongliang and Cui, Bin},journal={Proceedings of the ACM on Management of Data},volume={1},number={1},pages={1--26},year={2023},publisher={ACM New York, NY, USA}}
@article{li2023volcanoml,title={VolcanoML: speeding up end-to-end AutoML via scalable search space decomposition},author={Li, Yang and Shen, Yu and Zhang, Wentao and Zhang, Ce and Cui, Bin},journal={The VLDB Journal},volume={32},number={2},pages={389--413},year={2023}}
@inproceedings{li2021openbox,title={Openbox: A generalized black-box optimization service},author={Li, Yang and Shen, Yu and Zhang, Wentao and Chen, Yuanwei and Jiang, Huaijun and Liu, Mingchao and Jiang, Jiawei and Gao, Jinyang and Wu, Wentao and Yang, Zhi and others},booktitle={Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery \& Data Mining},pages={3209--3219},year={2021}}
@article{yang2022diffusion,title={Diffusion models: A comprehensive survey of methods and applications},author={Yang, Ling and Zhang, Zhilong and Song, Yang and Hong, Shenda and Xu, Runsheng and Zhao, Yue and Zhang, Wentao and Cui, Bin and Yang, Ming-Hsuan},journal={ACM Computing Surveys},year={2022}}
@article{bai2022autodc,title={AutoDC: an automatic machine learning framework for disease classification},author={Bai, Yang and Li, Yang and Shen, Yu and Yang, Mingyu and Zhang, Wentao and Cui, Bin},journal={Bioinformatics},volume={38},number={13},pages={3415--3421},year={2022}}
@article{wu2022graph,title={Graph neural networks in recommender systems: a survey},author={Wu, Shiwen and Sun, Fei and Zhang, Wentao and Xie, Xu and Cui, Bin},journal={ACM Computing Surveys},volume={55},number={5},pages={1--37},year={2022}}
@inproceedings{jiang2022zoomer,title={Zoomer: Boosting retrieval on web-scale graphs by regions of interest},author={Jiang, Yuezihan and Cheng, Yu and Zhao, Hanyu and Zhang, Wentao and Miao, Xupeng and He, Yu and Wang, Liang and Yang, Zhi and Cui, Bin},booktitle={2022 IEEE 38th International Conference on Data Engineering},pages={2224--2236},year={2022}}